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Abstract

A constitutive equation for elastomeric networks (ABGIL) was proposed by us previously and tested with a good success (Polymer 2003,
2004). It incorporates the Arruda and Boyce connectivity term based on Langevin statistics, the constraint term based on a generalized formu-
lation of different tube theories and a semi-empirical concept of a strain-dependent finite extensibility parameter. The ABGIL equation has now
been extended for filler-reinforced networks (ABGILFIL equation) by incorporating the concept of Kliippel et al. of a strain-amplification func-
tion describing the strain-induced filler-cluster breakdown. The proposed ABGILFIL equation is shown to offer a very good description of
stress—strain dependences in different deformation modes of virgin and strain-softened networks of natural rubber and SBR, up to high strains.
From the knowledge of the first-extension behavior, the Mullins-type strain-softening is predicted and shown to be composed of two contribu-
tions: the strain-induced filler-cluster breakdown and the strain-induced increase in the network mesh size, which is consistent with the mech-
anism of entanglements removal at the matrix—filler interface recently proposed and discussed by Hanson et al.

© 2006 Elsevier Ltd. All rights reserved.

Keywords: Elastomers; Fillers; Constitutive equation

1. Introduction

A constitutive equation (free energy, strain-energy density)
of an elastomeric material expresses the energy per unit vol-
ume, W, as a function of the state of strain. From W, the
two principal (engineering) stresses ¢; (i = 1,2) (with o3 =0)
can be calculated:

AW 2 W

"o nom .

A (i=1,2,3) are the principal stretch ratios. At constant
volume, A; = 1/A;4,.

Structure-based constitutive equations for homogeneous
elastomeric networks, predicting both low-strain-softening
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and high-strain finite extensibility effects, were derived by
Edwards and Vilgis [1], Kaliske and Heinrich [2] and Kliippel
and Schramm [3]. A constitutive equation (ABGIL) based on
the Langevin elasticity theory was proposed by the authors
and subjected, with a good success, to a thorough experimental
testing using biaxial stress—strain data [4,5]. All the named
constitutive equations are composed of two parts, W= W4 +
Wy, where the connectivity part W, is due to network junctions
and the constraint part, Wy is due to topological constraints.
Miehe et al. [6] presented a new micro-mechanically based
network model which is claimed to substantially improve the
modeling capacity of the older models and examples of its
ability to describe experimental data were shown.

Kliippel and Schramm extended their treatment to filler-
reinforced networks [3]. They combined their non-Gaussian
tube model of rubber elasticity with a damage model of strain-
induced filler-cluster breakdown and arrived at a strain-
dependent hydrodynamic amplification factor. With its use,
Kliippel and Schramm [3], Heinrich et al. [7] and Luo et al.
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[8] were able to get a good description of virgin uniaxial
stress—strain dependences of filler-reinforced elastomeric
networks and of the prestrain-induced softening, commonly
denoted as the Mullins effect [9,10].

The non-affine micro-sphere model of Miehe et al. [6] was
extended by Goktepe and Miehe [11] to predict the behavior
of filler-reinforced networks. The Mullins-type stress soften-
ing effect is considered to be due to the breakdown of
chain-particle bonds. A very good description of experimental
stress—strain and strain-softening data was obtained including
that of the anisotropy effects and permanent set. However,
although the theory is based on a molecular model, compari-
son of its results with experimental data affords parameter
values which do not seem to be clear characteristics of the
network structure. This is shortly discussed in Appendix A.

In this paper, we test the potential of the strain-dependent
hydrodynamic amplification factor to give a satisfactory
description of the biaxial stress—strain behavior of filler-
reinforced networks. For this purpose, we use, in the first step,
the Kliippel—Schramm constitutive equation [3] and, in the
second step, the ABGIL constitutive equation [4,5]. The result
is applied to the problem of the Mullins-type strain-softening.
The experimental data are taken from published papers.

1.1. The Kliippel—Schramm model of elasticity of
filler-reinforced elastomer networks

Following from the Kliippel—Schramm constitutive equa-
tion [3] the nominal (engineering) stresses a; (i = 1,2) read:

o 1=dd N\ o,
7= G ((1 —dl,) T d1m> (= 5)/
+2Ge(4" = 271) /A 2)

3
In=5—=3 5L=Y_J; d=T./n (2a)
i=1

I, is the first strain invariant, T, the Langley trapping factor
(0< T, <1), n. the number of statistical segments between
two successive entanglements, G. the elastic modulus due to
network junctions (crosslinks), G, the topological constraint
modulus (proportional to the density of entanglements of the
polymer). In uniaxial extension (UE), g, =0, and the stress
oy is calculated with A, = A3 =1/A12, I; =42 + 2/2;. In equi-
biaxial extension (EBE), A, =21, oo =0y, I} = 2/\% + 1//1‘1‘.

Eq. (2) applies to homogeneous (unfilled) networks. It was
shown to give a very good description of uniaxial stress—strain
dependences (up to high strains) obtained for a variety of
crosslinker concentrations in natural rubber networks under
conditions suppressing the occurrence of strain-induced crys-
tallization [12]. It is claimed to pass the plausibility test, i.e.,
to represent data in different deformation modes [3].

The presence in a soft highly deformable rubbery matrix of
hard and much less deformable filler particles leads to hydro-
dynamic effects: the required macroscopic (external) strain, ¢,
is achieved with the microscopic (internal) strain in the

elastomer matrix, &, being higher than ¢;. The hydrody-
namic reinforcement refers to a strain-amplification factor [3].

X = €iint/ & (3)
Aijnt = 1+ &0 = 1+ Xg;

The internal (microscopic) stretch ratio is assumed to be am-
plified to A; ;=1 + Xe; and this quantity should be inserted
for 4; in Eq. (2) in order to calculate the internal first strain in-
variant, /; ;,,, and the macroscopic stress observed at a macro-
scopic (external) strain ¢; (external stretch ratio A;=1+ ¢;).
The information on X is obtained from stress—strain
measurements.

Filler particles are generally aggregated into clusters which,
with increasing strain, may be expected to undergo breakdown
and decrease in size. Two approaches to filler-cluster break-
down were considered [3,7,8]: cluster decay according to
a power law and cluster decay according to an exponential
law. In accordance with [8], the first approach will be consid-
ered here. The relevant strain-amplification factor becomes
a decreasing function, X(¢;), of the external strain and, after
a constitutive generalization is carried out [8], X is expressed
as a function, X(E), of a scalar strain variable E:

X(E)=Xeu+ (Xo — X )(14+E) 4)

N 1/2
E= (Z(Hei)z/s) —1 (5)

i=1
Limit values of X at zero and infinite strains are X, and X,
respectively, while « determines the rate of decay of X(F)
with the strain function E. The three parameters, X,, X. and
a were shown to be related to the particle size and to the
structure, size, fractal dimension and anomalous diffusion
coefficient of the clusters [3].

During the first stretching of a filler-reinforced network,
the amplification factor decreases with strain [3,7,8] and at a
maximal applied external strain, when E attains the value of
Enax, 1t diminishes to X(E...). On repeated stretching to
€ max, the uniaxial stress—strain dependence becomes stabi-
lized for strains not exceeding &; .« since the amplification
factor, X(E.x), has reached a constant value for all strains
not exceeding the prestrain & . (.6, for & <& max
E< Emax)~

Kliippel et al. [3,7,8] measured uniaxial stress—strain
dependences of filled SBR and EPDM rubbers at various
prestrains, fitted Eqgs. (2)—(5) to the data and in this way
determined the six parameters contained in these equations.
With increasing filler concentration, the parameters G., G,
Xo, X and o showed a tendency to increase. Although in
the limit of infinite strain the theoretically expected minimum
admissible value of X, should not be lower than unity, for
some systems values lower than unity or even negative were
found. However, in the experimental range of the stretch ratio,
the strain-amplification factor X always remained reasonably
higher than the physically realistic value of unity.
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Kliippel and Schramm [3] also compared the Edwards—
Vilgis approach to finite network extensibility (Eq. (2)) with
the classical inverse Langevin approach in the non-Gaussian
tube model. Using the Padé approximation for the inverse
Langevin function, they expressed the stress in uniaxial
extension, gy, in the form (Eq. (16’) in Ref. [3]):

G.[ 3Ns— X ,3)N;—1 h e
=—<(2 -2 & 2G. (A2 =2
IuE 3(1\13_12 /uv3—1)Jr ( )

(2)

where the first term on the right-hand side can be derived from
the James—Guth equation based on a three-chain network
model [13]. A is the stretch ratio in uniaxial extension, N;
the number of statistical segments in a network chain between
successive crosslinks. A combination of the inverse Langevin
approach to the finite network extensibility with a constraint
term based on a non-Gaussian tube model was applied by
Kliippel et al. in several papers [14—17]. Kliippel and
Schramm found that Egs. (2)—(5) gave a better description
of the stress—strain data on prestrained carbon black-
reinforced SBR samples than Egs. (2')—(5) and concluded
that the Edwards—Vilgis approach is to be preferred [3].

The earlier papers of Kliippel et al. [3,7,8] led to the con-
clusion that the pronounced strain-softening in carbon black
and silica-reinforced SBR and EPDM rubbers in uniaxial ex-
tension can be quantitatively described by the non-Gaussian
tube model of rubber elasticity combined with the damage
model of strain-induced breakdown of filler clusters, the break-
down of filler clusters being the only mechanism determining
the prestrain-softening (the Mullins effect) in filler-reinforced
elastomers. In a more recent paper [18], however, Kliippel
and Meier have concluded that the simple one-mechanism
damage model does not give a sufficiently precise data descrip-
tion in uniaxial extension and, more seriously, reasonable
predictions for the equibiaxial extension. They ascribed this
failure to the inadequacy of the simple damage model and
developed a new micro-mechanical model that assumes two
mechanisms: a strain-induced breakdown of rigid filler clusters
and a cyclic breakdown and re-aggregation of more fragile
filler clusters. This two-mechanism model predicts prestrain-
softening and filler-induced hysteresis. An improved fit to
uniaxial and equibiaxial stress—strain data of filler-reinforced
SBR networks is claimed [18—21].

1.2. Tests of the Kliippel—Schramm approach

James et al. prepared sulfur/accelerator crosslinked natural
rubber networks both unfilled (NR gum [22]) and carbon
black-reinforced (NR 40, containing 40 phr of HAF black
[23]; according to a more detailed classification, the basic
HAF grade is denoted as N330). They performed biaxial
stress—strain measurements under carefully controlled condi-
tions on specimens softened by prestraining to obtain repeat-
able stress—strain dependences. We compare these data with
the predictions of the Kliippel one-mechanism damage model.

Fig. 1 shows a Mooney—Rivlin plot of the experimental re-
sults in uniaxial and equibiaxial extension, both on the unfilled
and filled networks. A general definition of the reduced stress,
0 red> €an be given using the stretch ratio function contained in
the crosslink term of Eq. (2):

12
Ojred = Ui/ (Ai - ;) (6)

For uniaxial extension (UE)

2 1
=X, A—==%—-——= 7
2 3 A 1 /\f ( a)
for equibiaxial extension (EBE)
2 1
b=, A—2=4——= 7b
2 1 A,‘ 1 A? ( )

The stress—strain data in uniaxial extension obtained on the
unfilled network are described by the three-parameter Eq. (2)
very well (curve 1). However, if the fitted parameter values
(given in Table 1) are used to calculate the stress—strain behav-
ior in equibiaxial extension (curve 2), then the obtained stress is
obviously grossly overestimated. In other words, Eq. (2) does
not pass the plausibility test, not even in the case of an unfilled
network. The same conclusion was already reached in our
previous paper [4] where Eq. (2) was compared with the
well-known Rivlin—Saunders data [24]. We have ascribed the
discrepancy to the inadequacy of the constraint term in Eq. (2).

Similar to unfilled networks, the uniaxial extension mea-
surements on the prestrain-softened carbon black-filled NR
40 network can be described by Egs. (2)—(5) very well
(Fig. 1, curve 3). The presence of carbon black leads to an
increase in G. with only minor or zero changes in G, and
ne/T. (Table 1). The fitted value of the strain amplifier (1.45)
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Fig. 1. Comparison of the Kliippel model [3,7,8] (curves) with uniaxial (O)
and equibiaxial ([) stress—strain data on gum and filled NR networks
[22,23]. Curves: NR gum, 1 — UE, 2 — EBE; NR 40, 3 — UE, 4 — EBE.
Curves are drawn using parameter values given in Table 1.
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Table 1

Parameters of Eqs. (2)—(5) for Fig. 1

Parameters NR gum NR 40
G. (MPa) 0.310 0.573
G. (MPa) 0.195 0.180
n/Te 90 90

X 1.45

Data: NR gum [22], NR 40 [23].

is not large; it is independent of strain, as can be expected for
a strain-softened network. Again, however, the equibiaxial
stress prediction (curve 4) based on UE measurement is highly
overestimated and the reason for this is obviously the same as
in the case of the unfilled network, i.e., the inadequacy of the
constraint term.

In summary, even though describing with a good success
some of the uniaxial extension data, Egs. (2)—(5) are not
able to use this knowledge for a correct prediction of the equi-
biaxial behavior of both unfilled networks and a prestrained
filler-reinforced network. The reason cannot be ascribed to
an inadequacy [18] of the one-mechanism damage model.

A question arises why the plausibility test was passed with
the Kliippel—Schramm data on their unfilled NR network [3]
and not with the James data (Fig. 1). A comparison of the
two sets of data is shown in Fig. 2, where the respective ratios
R of the equibiaxial-to-uniaxial reduced stresses are plotted vs
stretch ratio. Further data on two NR networks and one IR
network are included in Fig. 2.

The experimental measurements of Rivlin and Saunders,
Treloar, James et al. and Kawabata et al. (for references and
a more detailed information on the data see Ref. [4]) are the
most reliable and trustworthy of those published so far. The ra-
tios R following from their data at the stretch ratio 1.8 have
values in the range 1.2 £ 0.04. On the other hand, the Kliip-
pel—Schramm value of R at the stretch ratio 1.8 is significantly

1.6
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Fig. 2. Dependence of the ratio, R, of the equibiaxial-to-uniaxial reduced stress
on stretch ratio for NR and IR networks (the index 1 in A; has been dropped).
R at A =1.8: Rivlin—Saunders Wl 1.23; Treloar [] 1.22; James et al. + 1.18; IR
Kawabataetal. IR A 1.16 (for references see Ref. [14]); Kliippel et al. O 1.48.

higher (=1.5); such result is improbable and casts serious
doubts on the credibility of their equibiaxial measurements.
The conclusion of Kliippel and Schramm that their Fig. 6 in
Ref. [3] supports the developed concept of rubber elasticity
(expressed by Eq. (2)) does not seem to be well-founded.
Kliippel et al. [20] themselves mention possible errors in their
equibiaxial measurements on filler-reinforced networks due to
friction of the rolls in their stretching frame. They consider the
necessity of further biaxial investigations using the bubble
inflation test.

Further question concerns the general applicability of the
Edwards—Vilgis approach to the finite network extensibility.
Egs. (2)—(5) are claimed to give — contrary to the inverse
Langevin approach — a good description of the upturn behav-
ior in the stress—strain dependence of a prestrained filler-
reinforced network [3]. One can conjecture that Eq. (2) should
then be able to describe the upturn behavior of prestrained
unfilled networks. An example of stress—strain data on a pre-
strained lightly crosslinked network SBR B is shown in
Fig. 3. Data are taken from Ref. [25]; the effect, on the stretch
ratio, of tension set existing at the beginning of the second
extension was eliminated by subtracting a strain-dependent
correction. For the initial, i.e., the highest zero-stress stretch
ratio, A, the correction is equal to (A — 1), thus giving the
corrected stretch ratio A.,, = 1. For the highest stretch ratio
on second extension, 4, (equal to that on first extension), the
correction is assumed to be zero and A..,, = A,. For intermedi-
ate stretch ratios, A (the index 1 is dropped), the magnitude of
correction was assumed to decrease linearly from (4;— 1)
to zero: Acor=1+ (A — DA — A)/(An — A,). The curve in
Fig. 3 which is fitted to experimental points using Eq. (2) is
able to represent only a part of the data. The upturn of experi-
mental stress at high strains is more rapid than predicted by the
Edwards—Vilgis approach and, in contrast to the behavior of
prestrained filler-reinforced networks, no successful data repre-
sentation can be obtained.

o (MPa)

A

Fig. 3. Stress—stretch ratio dependence of a lightly crosslinked SBR B net-
work on second extension, points. Curve is drawn according to Eq. (2),
G.=0.108 MPa, G, =0.211 MPa, n./T.=370. (The index 1 in o, A; has
been dropped.)
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A similar type of behavior is observed with a virgin stress—
strain dependence of an SBR network reinforced with graphi-
tized HAF black. Data from a review of Kraus were quoted in
our previous paper [26] and are plotted in Fig. 4. Egs. (2)—(5)
are fitted to experimental points using parameter values G, =
0.260 MPa, G.=0.800 MPa, X,=1.25, X =1.0, «=1.0,
ne/T. =216. The degree of clustering of graphitized black and
its change with strain can be expected to be small which is
reflected in a low value of the amplification factor. The data
description is very good up to the stretch ratio of approx. 6.2
but thereafter the upturn of experimental stress is much more
rapid than predicted by the extrapolated Kliippel—Schramm
curve. Thus, in the case of a simple unprestrained polymer—
filler system with a small degree of clustering, the Edwards—
Vilgis approach to the finite network extensibility fails.

The examples shown in Figs. 3 and 4 strongly suggest that
the crosslinking (connectivity) term of Eq. (2) does not give
a suitable and universally applicable tool for the description
and interpretation of the upturn behavior of the experimental
stress—strain dependences. Moreover, the Edwards—Vilgis
[1], Kaliske—Heinrich [2] and Kliippel—Schramm [3] treat-
ments of the finite extensibility problem leave some open
questions; these are discussed in Appendix D.

2. The ABGILpd equation and its comparison with
experimental data

In previous two communications we analyzed published
biaxial stress—strain data obtained on networks of natural, iso-
prene, styrene—butadiene and siloxane rubbers [4,5]. A critical
examination of the published constitutive equations [1—3]
led to the conclusion that their connectivity terms are not mo-
lecularly based. We proposed and tested a new strain-energy
function denoted by the ABGI code. Its connectivity (network
junction) term, W, is equal to the result of the Langevin elas-
ticity theory of Arruda and Boyce (AB) [27]. The constraint
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= o
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Fig. 4. Points: experimental data of Kraus on an SBR network containing
graphitized HAF black. Curve is drawn according to Egs. (2)—(5). The index
1 in a4, A; is dropped.

term, Wp, is based on tube theories [2,3,28—33] and is ex-
pressed in a generalized phenomenological form [33] (GI, gen-
eralized invariant). The nominal (engineering) stresses o;
(i=1,2) following from the ABGI constitutive equation read:

Acm - AC 2 n n
01 =2C135L ! (Acm> (A =23) /0 + 26~ (=2 /2 (8)

de=(1/3)"% Aan =N'? (8a)

The ABGI stress—strain relations in uniaxial extension, equi-
biaxial extension and in pure shear are given in Appendix B.

The first term on the right-hand side of Eq. (8) follows from
the Arruda and Boyce theory [27]. The symbol for the theoret-
ical shear modulus given there as Gy, = vRT (v is the network
chain density) is replaced with 2C;, 4. is the network chain
stretch ratio, i.e., the ratio of the deformed and undeformed
chain end-to-end distances, /; is the first strain invariant
defined in Eq. (2a), A, is the hypothetical highest possible
network chain stretch ratio (or the finite extensibility parame-
ter, locking chain stretch ratio), which is predicted to be equal
to the square root of the network chain length expressed as the
number, N, of statistical segments in the network chain
(Eq. (8a)). The modulus component 2C contains contributions
from both chemical crosslinks and trapped entanglements of
a ‘stable’, i.e. junction-like nature; the network chain length,
N, is also determined by network junctions of both types [4].

The Langevin function is defined by L(x) = coth(x) — 1/x;
L7 '(x) is the inverse Langevin function which can be
expressed with a satisfactory accuracy by the Padé approxi-
mation introduced by Cohen [34] (Appendix C):

3x—x°

L™ (x)=Lyg (x) =1

©)
Thus, the ABGI equation can also be applied in a form which

we denote by the ABGIpd code and which is simpler in
calculations:

P (Ac/Acm)zé3
1- (Ac/Acm)

1

(A?—Ag)//\ﬁZCz%(A? —4) /% (10)

The second term on the right-hand side of Eqs. (8) and (10) is
a phenomenological formulation [33] of the results following
from different theories of the constraint effect [2,3,28—33]. It
should be noted that the constraint part of the Kliippel—
Schramm Eq. (2) is its special case with n = —1. The connec-
tivity part of the Kliippel—Schramm Eq. (2') is based on the
three-chain network model of James and Guth [13] whereas
the connectivity part of the ABGIpd Eq. (10) is based on the
eight-chain network model of Arruda and Boyce; for uniaxial
extension and N3 = 3N, the two models predict practically the
same dependences [25].

The constraint contribution to the modulus, often denoted as
G. in tube theories and replaced here with 2C,, is proportional
to dy 2, where d, is the tube radius (mean fluctuation radius of
the segment) in the undeformed state [2]. The tube radius is
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assumed to scale with the mean spacing of successive chain
entanglements. In the Kaliske and Heinrich treatment [2],
G. is proportional to the apparent concentration of elastically
effective physical crosslinks (entanglements) arising from con-
formational constraints. The parameter n reflects the constraint
mechanism considered in different theories and values ranging
from —1 to +1 have been predicted [2,3,28—33]. Gaylord and
Douglas [29] admit the possibility that 7 is not universal for all
the network structures and we have followed their suggestion to
treat it as an empirical parameter.

The ABGIpd equation contains four adjustable parameters:
C1, Ca, Acm, 1. The predicted low-strain behavior is essentially
determined by the elastic constants C, C, and the exponent .
The high-strain behavior is increasingly governed by N which
determines the square of the locking chain stretch, Eq. (8a),
and hereby the maximum possible macroscopic stretch ratios
which follow from the relation (8a): Ijmax =3N. With
n=—2 and a very large N, the ABGIpd equation reduces to
the Mooney—Rivlin equation [35,36]. With n = 42, the stretch
ratio function in the constraint term becomes identical with the
prediction of the Gaussian elasticity theory.

As shown previously for natural and isoprene rubber net-
works [4], the ABGI(n = —2, A.,) equation gives an excellent
representation of stress—elongation data up to medium strains,
slightly above the inflection point of the curve. However, for
a satisfactory simultaneous description of stress—strain data
in all geometrical modes, the value of n had to be increased
from —2 into the region from ca —0.2 to 41, depending on
the network. The increase in n is accompanied by a small
impairment in the data description at very low strains and an
appropriate compromise giving a minimum of systematic
point-curve deviations in the strain dependence of the reduced
stress must be found. The effect of the variation in n on the
quality of data description is shown, e.g., in Figs. 6—12 and
Tables 3—5 in Ref. [4]; an optimal value of n was usually
determined with an accuracy of approx. +0.2.

The virgin stress—strain dependences at high strains are in
a majority of cases more complex in all geometrical modes
than expected by the ABGI equation [4]. On the other hand,
prestrained networks tend to show a simpler behavior than
the unprestrained ones [25,26,37]. In Fig. 5 we compare the
ABGIpd Eq. (10) (curve 2) with the data (open circles) ob-
tained on second extension of an unfilled lightly crosslinked
SBR B network (data already shown in Fig. 3). The fit of
the curve 2 to the data in Fig. 5 is very good in the whole
stretch ratio range and the upturn behavior of the prestrained
network is represented by the ABGIpd inverse Langevin
approach with a very good success, in contrast to the failure
of the Edwards—Vilgis approach shown in Fig. 3.

The stress—strain dependence obtained on the first exten-
sion can be described by the ABGIpd curve la (A, =4.743)
up to the stretch ratio A = 5.5, slightly above the inflection
point of the experimental dependence. Thereafter the experi-
mental stress increases with a smaller slope than expected by
curve la. This observation was interpreted in our previous
paper [25] as a relaxation effect which may be ascribed to
some kind of strain-induced reorganisation of the network

3.5

o (MPa)

Fig. 5. Stress—stretch ratio dependences of network SBR B. Points, experi-
mental; O — first extension, & — second extension. Curves la, 1b, Ic, 2
are drawn according to the ABGIpd equation, curve 1 according to the
ABGILpd equation. The index 1 in a4, 4; is dropped.

topology, its extent increasing with increasing stretch ratio. If
so, then at high strains the parameters of the ABGI equation
should become functions of strain: the extensibility parameter
will increase, modulus components decrease with strain. Mi-
croscopically this could mean that some independent circuitous
paths are disappearing from the network while the average size
of the circuitous paths increases. A possible mechanism can be
imagined. Trapped entanglements contributing to C| — in spite
of behaving as stable network junctions at low and medium
strains — may be forced by the increasing stress to slip along
the network chains (cf. [1]), in principle up to the nearest cross-
links. This would modify the network topology and lead to an
increase in the network mesh size which would partially persist
on retraction and on second and subsequent extensions. High-
extension hysteresis, time-dependent tension set and aniso-
tropy can be envisaged as possible consequences. Permanent
flow might be a contributing factor in very lightly crosslinked
networks. In the undeformed state, a partial (or complete) re-
covery of the original topology can be expected to take place.

Since at high strains the stress is dominated by the extensi-
bility parameter, we have assumed that the modulus compo-
nents can be treated in the first approximation as independent
of strain. Information on the strain dependence of the extensi-
bility parameter is obtained by comparing the experimental de-
pendence with the ABGI equation, as described in more detail
in Ref. [4]. In Fig. 5 one can see that curve 1b, with a somewhat
higher A., = 5.1 than used for curve 1a, intersects the experi-
mental dependence at A= 6.0 while the curve lc with
Aem = 5.865 intersects it at the stretch ratio A = 8.6. From
a more detailed information of this kind it is possible to obtain
the dependence of A, on A and, using Eq. (8a), on A..

The concept of a strain-induced increase in the finite exten-
sibility parameter was utilized by us for the first time for the
description of tensile stress—strain dependences [25,26,37]
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and subsequently generalized under the designation of the
ABGIL equation for the description of biaxial stress—strain
data, as discussed in more detail earlier [4,5]. The letter ‘L’
in the ABGIL code is added to indicate that in this case the
finite extensibility parameter is considered to be a function
of stretch ratios, A;. The possibility of a strain-induced increase
in the network mesh size at high strains was anticipated in the
literature (Wu and van der Giessen [38], cf. [4]) but no theo-
retical treatment of the effect was proposed. The dependences
of A.m On A, obtained from experimental data can generally be
described by a phenomenological function of a simple form:
Ac S Ac.,av

Acm = Acm,a

Ac > Ar::,aa Acm = Acm,a + (Acmb - A<:mAa) [(Ac - Acta)/(kc,b - Ac.a)]a
(11)

Hence, the ABGIL equation is given by Eqs. (8) and (11) and
the ABGILpd equation is given by Egs. (10) and (11). For
chain stretch ratios lower than 4. ,, the finite extensibility pa-
rameter is constant and equal to A, 5. For chain stretch ratios
higher than A_,, attained not far above the inflection point of
the stress—strain curve, the finite extensibility parameter be-
gins to increase with strain and at the chain stretch ratio Ay
it attains the value A.,p. The chain stretch ratio A, is given
by the highest stretch ratio used in the experiment; sometimes
the sample is stretched up to the break. Thus, A., is not an
adjustable parameter and A.,p has a very limited freedom of
adjustment. The five parameters in Eq. (11), only three of
them being fully adjustable parameters, describe the range
and extent of the increase in A., and determine the stress—
strain behavior above the inflection point while being of
much less importance for the low-strain behavior. Tests of
the fitting procedure do not reveal any signs of instability.
The ability of the ABGILpd curve 1 to describe the virgin
stress—strain dependence of the SBR B network is shown in
Fig. 5; parameters are given in Table 2. The extensibility
parameter increases from 4.74; to 5.865 and, as anticipated,
the second value determines then the high-strain behavior of
the network on second extension. The prestrain had little effect
on the connectivity part of the modulus, 2C,, while the con-
straint modulus, 2C,, decreased. In the lower part of Fig. 5,
the stress—strain dependences obtained on the first and second

Table 2
Parameters of the ABGIpd and ABGILpd equations for curves in Fig. 5,
network SBR B; n=0.2

Parameter Curves

la 1b 1c 1 2
C, (MPa) 0.042 0.042 0.042 0.042 0.0455
C, (MPa) 0.195 0.195 0.195 0.195 0.1045
Aem 474, 5.10 5.865 5.865
Aca 2.345
Aemaa 4.745
Ach 4.96,
Acmib 5.865
a 1.50

extension are depicted together. The hysteresis loop resulting
from strain-softening resembles that of filler-reinforced net-
works. Due to prestrain, the strain energy of the given network
sample has decreased by 20%.

The ABGIL equation was previously compared with biaxial
stress—strain measurements on natural rubber networks differ-
ing in the degree of crosslinking [4]. The Cy, A..,, parameters
reflect the changes in the degree of crosslinking, as expected.
The values of the parameter n were found to range from —0.2
to +1 [4,5]. This corresponds to the predictions of four differ-
ent theoretical treatments [3,28—33] without giving an un-
equivocal support to any of them. The ABGIL equation was
shown to provide a good basis for a quantitative interpretation
of tensile properties of double network rubbers [39] up to high
stretch ratios.

The detailed biaxial stress—strain measurements of James
et al. on an NR gum network [22] and on a corresponding
NR filler-reinforced network prepared under conditions giving
essentially the same matrix structure [23] offer a unique op-
portunity to get information on the effect of filler. To get a pic-
ture as complete as possible, the previously performed testing
of the ABGIL equation using data on the gum network of
James et al. [4] is supplemented here by further data — equation
comparisons.

An excellent ability of the ABGILpd Egs. (10) and (11) to
represent the general biaxial stress—strain data on an NR gum
network [22] is shown in Fig. 6 in the plot of log o vs A, for
different constant values of A; and in Fig. 7 in the plot of
reduced stresses vs reciprocal stretch ratio (curves 1, la, 2,
2a). The fitted parameter values are given in Table 3. Fig. 6
shows that the relative point-curve deviations are fairly small;
most of them do not exceed 5%. Reduced stresses (Fig. 7) also
reflect relative deviations of experimental points from the fit-
ted curves in a sensitive manner. In Fig. 7, all available data
in uniaxial extension (up to A; =4.8) have been plotted.

04

log 64 (MPa)

-04 |-

Fig. 6. Dependence of log o, (MPa) on 4, at constant values of 4; (indicated in
the graph). Points: NR gum [22]. Curves: Egs. (10) and (11), parameters are in
Table 3.
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Fig. 7. Dependence of reduced stresses on reciprocal stretch ratio. Points: data
[22,23]. Curves: Egs. (10), (11), (3)—(5), parameters are in Table 3. NR gum: 1
—UE O,la—PS1 A,2—-EBE [1,2a—PS2 &.NR40:3 - UE O, 4 —
EBE [1,5 —PS1 x,6 —PS2 A. Curves 5, 6 and the corresponding PS points
are shifted vertically by +0.5 MPa.

3. The ABGILFILpd equation and its experimental
testing

Following the approach of Kliippel and Schramm [3]
described in Section 1.1, we have applied the ABGILpd
equations (10) and (11) together with Egs. (3)—(5) to process
the data of James and Green [23] on prestrained specimens
of the natural rubber network NR 40 containing 40 phr
of HAF carbon black. The combination of Egs. (10), (11),

Table 3
Parameters of the ABGILpd and ABGILFILpd equations for four NR
networks (curves in Figs. 6—9); n=0.2

Parameter NR gum NR 40 NR 23 NR 69
prestrained virgin virgin
C; (MPa) 0.145 0.195 0.125 0.135
C, (MPa) 0.081 0.100 0.070 0.175
Aem” 3.36
x° 1.90
Aca 1.69 1.60 1.90
Acma 3.52 3.38 3.55
Aeh 2.86 2.11 3.59
Acmp 3.85 3.60 4.64
a 1.50 1.12 1.12
X, 2.6 5.9
X 0.22 0.22
a 0.40 0.65
Am (UE) 4.8 2.0 2.10 2.03
Amin 2.5 1.72 1.75 1.5
A0 yeq (%) 11.7 18.7 34.6 54.6
Orea (A=1) (MPa) 0.47 1.17 1.05 3.7

Am (UE) — the highest stretch ratio used in uniaxial extension; An;, — stretch
ratio at the minimum reduced UE stress; Acg..q — the percent decrease in
reduced UE stress from A =1 to A = Ayin; 0reqa (A=1) — reduced UE stress
at zero strain.

# Extensibility parameter independent of strain.

" Strain amplifier independent of strain.

(3)—(5), which we denote as ABGILFILpd, was fitted to the
experimental data and the result is shown in Figs. 7 and 8.
The obtained parameter values are given in Table 3. An appro-
priate value of the exponent # lies around 0.2 as before for the
gum network. The addition of carbon black leads to an increase
in the modulus components C;, C, and the finite extensibility
parameter of the prestrain-stabilized filled network is indepen-
dent of deformation, in accordance with our previous findings
[37]. Also, the amplification factor is independent of deforma-
tion, in accordance with the measurements of Kliippel et al.
[3,7,8]. Thus, five parameters are sufficient to represent the
behavior of prestrained specimens in uniaxial and equibiaxial
extensions with a very good accuracy, and the behavior in
pure shear with a satisfactory accuracy. The transverse shear
stresses at the highest strains seem to suffer from experimental
scatter. Also, the biaxial stresses obtained around A,/A, = 1.8/
1.5 and 2.0/1.6 are seen in Fig. 8 to deviate towards lower
values more than suggested by neighboring data. Nevertheless,
for a molecularly based theory, the overall measure of agree-
ment between the data and fitted curves, which is seen both
in Fig. 7 and in Fig. 8, can be denoted as satisfactory. Only
very few points deviate by as much as 8—10%.

The ability of the ABGILFILpd equation to describe the uni-
axial and equibiaxial stress—strain data of Davies et al. [40] on
unprestrained NR networks containing 23 phr (NR 23) and
69 phr (NR 69) carbon black of the HAF (N330) grade is shown
in Fig. 9. Davies et al. found that data on carbon black-filled NR
networks obtained in different deformation modes (uniaxial
extension, uniaxial compression, simple and pure shear) super-
imposed quite closely when plotted in the log—log coordinates
of the reduced stress vs (/; — 3). In Fig. 9, only data in uniaxial
extension and uniaxial compression are plotted; data in shear
lie between them. It should be recalled that uniaxial compres-
sion along one direction (say, direction 3, with stretch ratio
A3 < 1) produces the same state of strain as equibiaxial exten-
sion in the other two directions (A; = A, > 1) providing that

04—

log 64 (MPa)

UE

-0.4
0.5

Fig. 8. Dependence of log o, (MPa) on 4, at constant values of 4; (indicated in
the graph). Points: NR 40 [23]. Curves: Eqgs. (10), (11), (3)—(5), parameters
are given in Table 3.
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Fig. 9. Comparison of the ABGILFILpd equation (curves) with experimental
data on virgin networks NR 23 and NR 69 [40]. Points: O uniaxial extension,
[ uniaxial compression (equibiaxial extension). Curves: Egs. (10), (11), (3)—
(5), parameters are given in Table 3.

A3 = I/A%. Under such condition, the values of (I; — 3) in
uniaxial compression and equibiaxial extension are equal and
the same applies to the respective reduced stresses. The exper-
imental dependences can be described by the theoretical curves
very well. Only two points show a somewhat higher deviation
(between 5 and 10%) while all other points deviate less than
4%. The amplification factor (see Table 3) decreases with
strain, in accordance with the findings of Kliippel and Schramm
[3], and the finite extensibility parameter increases with strain
in conformity with our previous results [37]. The optimum
value of the exponent n in the constraint term was found to
be 0.2, i.e. it is significantly higher than the value of —1 follow-
ing from the Kliippel—Schramm model [3].

In Fig. 10, the Kraus data on an SBR network containing
graphitized HAF black (data already shown in Fig. 4) are

1
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Fig. 10. Points: experimental data of Kraus on an SBR network containing
graphitized HAF black, first stretching. Curves: ABGILFILpd, Egs. (10),
(11), (4), la — Ay =5.52; 1b — A, =5.80; 1 — Aoy increasing from 5.52
to 5.80. The index 1 in oy, 4; is dropped.

compared with the ABGILFILpd equation. The obtained pa-
rameter values are given in Table 4. Curve la with a constant
finite extensibility parameter A., =5.52 is able to give an
excellent representation of the experimental data up to 90%
of the strain at break and up to two thirds of the stress at break.
In the region of the highest strain, the experimental stress in-
creases less rapidly than curve la. This is ascribed to a gradual
strain-induced increase in A, up to 5.8, the value which is used
for curve 1b. The decrease in X with strain is small (from 1.25
at zero strain down to 1.126 at the highest stretch ratio 8.64)
and the predicted strain-softening due to filler-cluster break-
down is thus practically zero. The finite extensibility parameter
shows a less significant increase with strain than it does in net-
works containing non-graphitized blacks. Nevertheless, some
softening is predicted to take place. Curve 1b can serve as an
estimate of the stress—strain dependence on second extension.

4. The Mullins-type strain-softening

The ABGILFILpd equation incorporates the concepts of
a strain-induced filler-cluster breakdown (Egs. (3)—(5)) and
of a strain-induced increase in the finite extensibility parame-
ter. The first effect seems to be semipermanent; a recovery of
the second one after a long time and at an increased tempera-
ture seems plausible. Provided that the time interval between
the end of the first (uniaxial) extension—retraction cycle and
the beginning of the subsequent second extension is not
excessively long and that the temperature did not increase,
both effects should contribute to prestrain-softening [9,10],
commonly called the Mullins effect. This expectation is tested
here in Figs. 11 and 12 using published experimental data. In
the following, the index 1 in gy, A; has been dropped.

Bueche [41] performed his stress — extension—retraction
measurements under quasi-equilibrium conditions, i.e., using
very low-strain rates. The recovery of the specimen length
after the first extension—retraction cycle was not complete;
the permanent set was, as a rule, around 10%. By swelling
the specimen in benzene and subsequent evaporation of the
solvent, this permanent set could be essentially removed. An

Table 4
Parameters of the ABGILFILpd equation for curves in Fig. 10; n=0.2
Parameter Curves

la 1 1b
C; (MPa) 0.110 0.110 0.110
C, (MPa) 0.370 0.370 0.370
Aem’” 5.52 5.80
x° 1.126
hea 5.0
Aemea 5.52
Aeb 5.57
Aemb 5.80
a 1.5
X, 1.25 1.25
Xoo 1.05 1.05
a 0.6 0.6

? Extensibility parameter independent of strain.
® Strain amplifier independent of strain.
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o (Mpa)

Fig. 11. Comparison of the ABGILFILpd equation (curves; parameters in
Table 5) with experimental data (points: O first extension, [] second extension).
Network A: NR 20 [42]; B: SBR 30 [41], shifted vertically by +5 MPa; C: SBR
40 [43], shifted vertically by +7.5 MPa; D: SBR 50 [9], shifted vertically by
2.5 MPa. Curves 1: first extension, X and A, strain-dependent. Curves 2: X con-
stant, equal to its value at maximum prestrain. Curves 3: second extension, both X
and A, constant, equal to their respective values at maximum prestrain.

example of measurements on an SBR 30 network (designation
B in the graph) containing 30 phr of carbon black N330 is
shown in linear coordinates in Fig. 11 and in the coordinates
of logarithm of reduced stress vs stretch ratio in Fig. 12.
The highest stretch ratio on the first extension was A, =3.8.
The stress at this stretch ratio is not given in Bueche’s
Fig. 3 [41]; we have estimated it by extrapolation. The param-
eter values for the first extension were then determined by
fitting the ABGILFILpd equation to the data (see Table 5)
and used for drawing the curves 1B in Figs. 11 and 12. The
strain-amplification factor at zero strain is X, =1.84 and at
the maximum prestrain (4, = 3.8) it drops to X, = 1.335. Fol-
lowing Kliippel and Schramm [3], we assume that the strain
amplifier on the second extension is equal to X, up to the
stretch ratio A,,. However, curves 2B which are drawn using
X =X,,, i.e., with the assumption that the filler-cluster break-
down alone is responsible for the Mullins softening, are far
from giving an at least approximate description of the sec-
ond-extension points. This result indicates that contrary to
the conclusions of Kliippel et al., the filler-cluster breakdown
is responsible for only a part of the total Mullins softening.
The fitted finite extensibility parameter on the first exten-
sion (Table 5) starts at low strains with a rather low value of

I
N

log 6,eq (Mpa)
o

Fig. 12. Points and curves of Fig. 11 in the coordinates of log reduced stress vs
stretch ratio. Curves and points A are shifted vertically by —0.25, curves and
points C by +0.3.

2.25 and increases up to Acpym = Acmp = 2.95; at 4, =3.8.
In our previous papers, a strain-induced increase in the finite
extensibility parameter, or, in molecular terms, an increase
in the average network mesh size, was observed and assumed
to get contributions from both the matrix (sliding of entangle-
ments) and the matrix—filler interface (sliding of filler—matrix
contacts) [37]. In accordance with arguments given in our pre-
vious papers [26,37] and with the behavior of the unfilled net-
work SBR B (Fig. 5, Table 2), we can assume that during the
second extension the finite extensibility parameter is much less
strain-dependent or even constant and equal to Ay, attained
at the highest prestrain. Thus, curves 3B in Figs. 11 and 12 are
drawn with X =X, and Acm = Acmm. As can be seen both in
the linear graph of Fig. 11 and in the highly scatter-sensitive
plot of Fig. 12, the fit of curves 3B to the experimental
second-extension data is convincingly good.

Another test was performed here using experimental data of
Kilian et al. [43] on an SBR 40 network (C in graphs) contain-
ing a somewhat higher concentration, 40 phr, of N330 black.
The effect of permanent set (=10%; A; = 1.1) existing at
the beginning of the second extension was removed by sub-
tracting a strain-dependent correction, in the manner described
in more detail in Section 1.2. Curves 1 and 3 which are drawn
using the fitted parameter values given in Table 5 describe the
experimental data both on the first and second extensions very
well, without any systematic deviations.

Data on an NR 20 network [33] containing a rather low
HAF (N330) black concentration of 20 phr are plotted in
Figs. 11 and 12 and are denoted as A. Stretch ratios on the sec-
ond extension are corrected in the manner described above. To
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Table 5
Parameters of the ABGILFILpd equation for networks A—D and curves in Figs. 11 and 12; n=0.2
Parameter A NR 20 B SBR 30 C SBR 40 D SBR 50

Curves 1 3 1 3 1 3 1 3

C, (MPa) 0.151 0.151 0.125 0.125 0.120 0.120 0.110 0.110
C, (MPa) 0.096 0.096 0.172 0.172 0.210 0.210 0.146 0.146
Aem 2.92, 2.95, 4.575 3.97;
X 1.15¢ 1.335 2.54, 1.71
Aca 1.60 1.40 2.06 1.55
Aema 2.30 2.25 3.29 3.13
Aep 2.644 2.76 4.25¢ 3.664
Aemb 2.92, 2.95, 4.575 3.97,
a 1.50 1.73 1.37 1.95
X, 1.47 1.84 4.15 3.59
Xoo 1.00 0 0.20 0.40
o 1.26 0.40 0.72 0.95
Am 4.05 4.05 3.80 3.80 3.50 3.50 4.00 4.00
Evun (%) 27.5 354 40.2 38.6
E. qn (%) 26.2 38.0 53.5 69.6
Amin 1.75 1.75 1.60 1.77
AGeq (%) 18.5 30.4 53.3 51.3
Orea (A=1) (MPa) 0.80 1.17 271 1.75

E,yun — percent of the deformation energy lost in the Mullins softening; E, s, — percent of the contribution of filler-cluster breakdown to the energy lost in the

Mullins softening. An, Amin, AGred, Treq (A=1) — see Table 3.

optimize the fit, a somewhat higher A, (4.05) was used in the
calculation than was the experimental prestrain ratio (3.9). The
quality of data representation using the fitted parameter values
(Table 5) is very good.

Data of Mullins and Tobin [9] on an SBR network contain-
ing 50 phr of carbon black of the MPC type (medium process-
ing channel black, no longer used) are shown in Fig. 11D. The
description of the virgin stress—strain curve is excellent; the
data on the second extension show a slight systematic down-
ward shift in the region of medium strains but the discrepancy
is not serious. A slight decrease in the C,-parameter (of 15%)
makes the fit satisfactory.

The reduced stress in uniaxial extension of virgin specimens
decreases with strain to a minimum (Fig. 12) at the stretch ratio
Amin- For unfilled networks, A,;, tends to be higher than 2.0, see
e.g. Fig. 1. For the carbon black-filled networks, the minimum
is attained at An;, lower than 2 and, with increasing carbon
black content, it decreases down to 1.5 (Tables 3 and 5). The
percent decrease, Ac,.q, of reduced stress in the stretch ratio
range from unity to Ay, tends to assume values which increase
with the HAF carbon black concentration. This behavior is
obviously due to filler-cluster formation increasing with filler
concentration and resulting in a greater extent of strain-induced
filler-cluster breakdown. Such explanation is corroborated by
a close correlation of Agq with X,,. Our values of parameter
X, behave in a manner similar to that observed by Luo et al.
[8], i.e., they increase with filler concentration. For virgin net-
works, the network-density-reflecting parameter, C;, shows
a certain tendency to decrease with increasing carbon black
concentration, i.e. with the decreasing content of polymer
matrix in the system. Luo et al. found an increase in G,
(~C)) with filler concentration and assumed the formation of
filler—polymer couplings to be responsible [8]. In our case, the
low number of data precludes any definite conclusion. The

constraint modulus (2C,) of virgin networks shows a distinct
tendency to increase with the HAF carbon black concentration,
in accord with the observation of Luo et al. of the effect of the
ISAF black. Similarly to the findings of Kliippel et al., some
values of X, drop below unity (cf. Section 1.2), but even at
the highest applied stretch ratio the strain amplifier remains
higher than the lowest physically reasonable value of unity.

The energy per unit volume lost in the Mullins softening is
given by the area A;_; limited by curves 1 and 3 in Fig. 11.
The contribution of filler-cluster breakdown to the Mullins
softening is given by the area A;_, limited by curves 1 and
2. The relative contribution of filler-cluster breakdown to the
total energy loss, E,. g1 =A;—»/A;_3 tends to increase with
filler concentration (Tables 5 and 6). The exact form of such
concentration dependence may be affected by the conditions
of comparison (i.e., constant maximum deformation, stress,
input energy).

The stress—strain behavior of the SBR 50sil network rein-
forced with 50 phr of precipitated silica (data in [41]) offers
a somewhat different picture (Fig. 13) than that of Fig. 12.
The shape of the dependence of log(o,.q) on A around its min-
imum is highly asymmetric and for A > A, the reduced stress
increases but slightly. A pronounced decrease in reduced stress
at low strains — larger than that found in carbon black-
reinforced networks — can be ascribed to a disruption of exten-
sively formed filler—filler structures, as formulated by Bueche
[41]. In the approach of Kliippel et al., the term filler-cluster
breakdown is used; it manifests itself in a very pronounced
strain dependence of the strain-amplification factor (Table 6).
As a result, most of the Mullins softening of the SBR 50sil
network is due to filler-cluster breakdown (curve 2a) and E, gy
is as high as 85%. Except for one point at the lowest strain,
curve 2 drawn with the appropriate values of Xy, and Acm m,
gives a satisfactory description of the second extension.
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Table 6
Parameter values of the ABGILFILpd equation for the SBR 50sil network and
curves in Fig. 9; n=0.2

Parameters and Curves

properties 1 2a 2 3 4a 4

C, (MPa) 0.085 0.085 0.085 0.130  0.130  0.130
C, (MPa) 0.245 0.245 0.245 0.250  0.250  0.250
Aem 5.17g 297,
X 2.64¢ 1.361
Aca 1.50 1.50 1.22 1.22

Acm.a 3.95 3.95 1.72 1.72

Ach 4.56 4.56 2,665  2.665

Acmp 5.17g  5.17g 297, 297,

a 1.02 1.02 1.15 1.15

Xo 6.15 2.64¢ 1.77 1.36;

X 0 1.0

« 1.12 1.0

A0 eq (%) 72 26.5

Oreq (A=1) (MPa) 4.13 1.52

Ecyvun (%) 35

Evn (%) 86

AGred, Orea (A=1), Expun, Ern — see Tables 3 and 5.

After the second extension—retraction cycle was finished,
the specimen was subjected to a heat treatment at 115 °C for
22 h. From the subsequently measured third extension data
(open circles), it is observed that, due to heat treatment, the
stress at medium and high strains has recovered completely

log G,eq (Mpa)

-0.4 4a u i

Fig. 13. Comparison of experimental data on the SBR 50sil network [41] with
curves drawn according to the ABGILFILpd equation, parameters are in Table
6. First extension: X, curve 1. Second extension: [J. Curve 2a — the same
parameters as for curve 1 but X constant. Curve 2 — X, A, constant. Third
extension after heat treatment: O and @; @ and curve 3 shifted vertically
by —0.4. Points B equivalent to the second extension but shifted vertically
by —0.4. Hypothetical fourth extension: curve 4a — the same parameters as
for curve 3 but X constant. Curve 4 — X, A, constant.

while at low strains the recovery is small. The ABGILFILpd
parameters show that after the specimen was strain-softened
and subsequently heat-treated, the original highly strain-de-
pendent amplifying factor decreased and became much less
strain-dependent. The finite extensibility parameter decreased
but its strain dependence (Acmp — Aem.a) Femained practically
the same. There are some other differences between the orig-
inal and the softened and subsequently heat-treated network.
The parameter C; reflecting network density increased by
18% and the finite extensibility parameter at the highest
stretch ratio (A4, =3.6) decreased by some 20% with respect
to the first extension. Whether the structural processes taking
place on heat treatment are of a purely physical character is
questionable. One could conjecture that under the given condi-
tions of heat treatment, with no antioxidant added to the com-
pound and with temperature and time of treatment commonly
used in tests of accelerated aging, some oxidative crosslinking
might have taken place and been responsible for the increase
in C; and decrease in N. An exposition of a virgin specimen
to the conditions of heat treatment could give some compara-
tive information on the molecular background of the observed
changes. Also, a further (fourth) extension of the twice ex-
tended, heat-treated and thereafter extended specimen might
be helpful in giving useful information. The parameter values
of the heat-treated specimen predict that the subsequent (i.e.,
fourth) extension should again produce a softening with re-
spect to the third extension, this time due to the increase in
the finite extensibility parameter to its upper limit attained
on third extension, and — since clusters have been largely
broken down — with a small contribution of the filler.

5. Discussion

As shown in Appendix D, the Edwards—Vilgis approach to
the finite network extensibility is not molecularly based and has
a phenomenological character. The Kliippel—Schramm treat-
ment is of the same type and, moreover, its prediction for the
contribution of finite extensibility to stress at low strains is
not physically sound. The main reason for the inability of
Egs. (2)—(5) to correctly represent biaxial data on filler-rein-
forced networks lies primarily in the inadequacy of the con-
straint term and not in a failure of the one-mechanism
damage model. The Kliippel—Schramm equibiaxial measure-
ments do not seem trustworthy and the use of such data in
“plausibility tests” of constitutive equations is questionable.
The Edwards—Vilgis, Kaliske—Heinrich and Kliippel—
Schramm predictions of the stress-upturn behavior fail to de-
scribe some important experimental stress—strain dependences.

The ABGIL constitutive equation for homogenous (un-
filled) elastomer networks incorporates the two-parameter
(C1, Aem) connectivity term, the two-parameter (C,, n) con-
straint term and a semi-empirical concept of a strain-depen-
dent finite extensibility parameter (network mesh size). By
prestraining, the behavior of an SBR network was simplified
and the finite extensibility parameter was found to be strain-
independent. The parameter values for five hydrocarbon rub-
ber networks (IR, SBR, three NR) were determined previously
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[4,5] and their relation to the network and polymer structure
was discussed in some detail [5]. The value of n = 0.2 was
the most frequent one. The reduced stress extrapolated to
zero strain (the zero-strain shear modulus) o4g(A=1)=
2C, +2C, + FE, where FE is a contribution of finite extensi-
bility of network chains, which is small for not-too-highly
crosslinked networks. The plateau modulus, GON, of the uncross-
linked polymer, given by entanglements, contributes both to
the constraint modulus, 2C,, and to the connectivity modulus,
2C; [5]. With increase in crosslink concentration, the con-
centration of network chains (2C, connectivity modulus) in-
creases and the network chain length (extensibility) decreases,
the constraint modulus 2C; being affected to a smaller extent.
In order to obtain an acceptable stiffness—extensibility compro-
mise in practical applications, the range of permissible crosslink
concentrations cannot be too wide. This is exemplified by the
rather narrow ranges of parameter values and zero-strain moduli
of three NR networks [22,24,44] crosslinked to different extents
(Table 7).

Measurements on two unfilled SBR networks indicate
a higher constraint modulus and zero-strain modulus than
the corresponding values obtained on NR networks. The dif-
ference is obviously due to a higher G% value (800 kPa) of
SBR compared with that of NR (450 kPa) [5].

For filler-reinforced networks, the ABGILpd equation is
extended to the ABGILFILpd equation by incorporating the
concept of Kliippel and Schramm [3] of a three parameter
(X0, X, a) strain-amplification function based on a one-
mechanism model of filler-cluster breakdown; volume changes
on strain and permanent set formation are not considered. Sim-
ilarly to the unfilled networks, the most appropriate value of
the exponent n was found to be 0.2. The zero-strain modulus
following from the ABGILFILpd equation is related to Cy,
C,, FE, in the same way as the modulus of unfilled networks
but it is significantly increased by a factor of X,:

ored(x = 1) = (2C1 + 2C2 +FE)X0

As mentioned above, the percent decrease in the reduced
stress from g,.4(A = 1) to its minimum value of ¢ eq(Amin) COI-
relates with X,. With increasing stretch ratio, the contribution
of the constraint term to the reduced stress decreases monoton-
ically while the contribution of the connectivity term passes
through a minimum and thereafter increases due to finite

extensibility. Data in Table 7 show the effect mentioned above:
the constraint modulus tends to increase with filler concentra-
tion while the connectivity modulus is less affected. No expla-
nation is available at present for the rather high 2C; of the
NR40 prestrained network. The constraint and zero-strain
moduli of filler-reinforced SBR networks tend to be higher
than those of NR networks, similarly to the unfilled networks.
The effect of a higher plateau modulus G% of SBR obviously
plays its role even in the presence of fillers.

A comparison of the ABGILFILpd equation with
experimental data strongly suggests that at least two factors
contribute to the Mullins strain-softening. At lower strains,
the filler-cluster breakdown mainly operates while the contri-
bution of the strain-induced increase in the finite extensibility
parameter becomes more pronounced at higher strains. The
relative contribution to strain-softening of the first factor tends
to diminish with decreasing filler concentration; in the absence
of filler, only the second factor contributes — together with the
decrease in C, — to the strain-softening observed in lightly
crosslinked unfilled networks.

In the Goktepe and Miehe model [11], the Mullins-type
strain-softening is due to a damage mechanism resulting
from the breakdown of chain-particle bonds. On the other
hand, Hanson et al. [46] argue that the Miehe mechanism of
a permanent material damage as chains are torn loose from
the surface of filler particles and the number of network chains
is thus reduced, is not compatible with their own experimental
observations. They propose a mechanism which conserves the
number of network chains, and only the entanglement density
with respect to the original strain axis is reduced. Our mecha-
nism of the strain-induced increase in the network mesh size
explains the softening by sliding of entanglements at higher
strains. Such process is not considered in the Goktepe—Miehe
model but is consistent with the Hanson mechanism which
considers removal of entanglements associated with the strain
axis by one chain sliding under another chain at its attachment
point to a filler particle; entanglements associated with strains
along axes perpendicular to the first strain would likely not be
affected. On the other hand and in contrast to Hanson et al.,
our data analysis leads to the conclusion that changes at the
polymer—filler interface and/or in the matrix cannot be the
only sources of softening and that the mechanism of Kliippel
and Schramm [3] of strain-induced breakdown of filler clusters
is an important contributor. The filler-cluster breakdown is

Table 7

Ranges of parameter values obtained on the studied networks

Parameters and properties NR unfilled NR filled virgin NR filled SBR unfilled SBR unfilled SBR filled
prestrained virgin prestrained virgin

No. of networks 3 4 1 2 1 5%

Filler concentration (phr) 0 20—69 40 0 0 30—60

n 0.2 0.2 0.2 0.2—0.45 0.2 0.2

2C, (kPa) 140—300 250—300 390 84—150 90 170—320

2C, (kPa) 150—220 140—-370 200 390—360 205 290—480

N (=22nb) 24—14 822 11 34-8.5 34 8-31

Orea (A=1) (kPa) 330—470 800—3700 1200 475-520 300 1200—5200

* Includes results on a SBR network containing 60 phr of HAF black [45].
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signalized on the first stretching already: it manifests itself in
the magnitude of the initial decrease in reduced stress.

A final note should be added. Comparisons of the published
theoretical models of the Mullins-type softening with experi-
mental data have practically always been done using linear
stress—strain coordinates. In such type of plot, however, the
small-strain data are not properly taken into account. The abso-
lute values of the deviations of experimental points from fitted
curves become small to negligible at small strains, in spite of
their being often rather large relatively. A meaningful testing
of theoretical predictions requires a detailed knowledge of
stress—strain dependences down to very low strains. Compar-
ison of Figs. 11 and 12 shows the advantage and importance of
using plots of log reduced stress vs strain. Such plots offer a
realistic assessment of point-curve deviations and give the
low-strain data the appropriate statistical weight in drawing
conclusions.

6. Conclusions

Using the proposed ABGILFILpd constitutive equation we
have obtained:

1. A very good description of the stress—strain dependences
in uniaxial extension of virgin filler-reinforced NR and
SBR networks;

2. A very good prediction, based on uniaxial data, of the
equibiaxial extension (uniaxial compression), for networks
with filler concentrations up to 70 phr, using n =0.2; the
value n = —1 following from one of the theories [3] was
shown previously [4] and again here to lead to non-consti-
tutive predictions;

3. An excellent description of the general biaxial behavior of
an NR gum network and a satisfactory biaxial stress—
strain data description of the corresponding filler-rein-
forced prestrain-softened network NR 40;

4. A very good prediction of the magnitude of the Mullins
softening from the knowledge of the tensile stress—strain
behavior of the respective virgin network. The limiting
values, X, Acm.m, attained at the highest prestrain govern
the stress—strain behavior on subsequent extension.

It is concluded that at least two factors contribute to the
Mullins softening: at lower strains, the filler-cluster breakdown
proposed by Kliippel et al. is the main factor while the strain-
induced increase in the network mesh size increasingly contrib-
utes at higher strains and plays a role even in the filler absence.
The concept of strain-induced increase in the finite extensibil-
ity parameter (network mesh size) is consistent with the mech-
anism of entanglements removal at the matrix—filler interface
recently proposed and discussed by Hanson et al. [46].

In derivation of the Edwards—Vilgis, Kaliske—Heinrich and
Kluppel—Schramm theories, a step is included which does not
follow from structural considerations. It imparts to the respec-
tive connectivity terms a phenomenological character and
adversely affects their ability to represent the experimental
stress-upturn behavior of some important network systems.
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Appendix A

The non-affine micro-sphere model. The Miehe theory [6]
based on a non-affine micro-sphere (NAMS) model contains
five material parameters: u — effective shear modulus propor-
tional to the network chain density, v; N — number of chain
segments in a network chain; U — tube geometry parameter
reflecting constraint stiffness; ¢ — non-affine tube parameter
reflecting the shape of the constraint stress; p — non-affine
stretch parameter introducing a flexibility of the locking
stretch; the Arruda—Boyce eight-chain-model is just a special
case with p =2. The NAMS theory was shown [6] to give an
excellent description of the well-known stress—strain data of
Treloar [44] and of James et al. [22] in uniaxial extension,
equibiaxial extension and in pure shear. The James network
has a distinctly higher zero-strain modulus than that of Treloar
[4,5] and in unfilled networks such observation is commonly
ascribed to a higher crosslink concentration. One would expect
that data fitting will yield a higher u for the James et al. net-
work. However, the authors determined equal values of u
(equal network chain densities) for both networks and do not
offer any explanation for the finding that the fitted constraint
stiffness U of the Treloar network is four times larger and
its non-affine tube parameter ¢ six times smaller than that of
the James et al. network.

Goktepe and Miehe [11] compared predictions of their
model with stress—strain properties of two filler-reinforced
networks, denoted here as SBR 30 and SBR 50. Fig. 11 shows
that the stress—strain behavior of these two networks does not
differ appreciably; we determined similar values for both their
connectivity moduli and constraint moduli (Table 5). Goktepe
and Miehe determined moduli, u, of the crosslink-to-cross-
link network and found values differing by a factor of four,
0.11 and 0.41 MPa, respectively. The values obtained for the
constraint parameter, U (2.03 and 0.53) also differ by a factor
of four. No interpretation of these results is given in the orig-
inal paper [11] thus leaving the impression that the obtained
parameter values are rather of a phenomenological character.

Appendix B

Stress—strain relations ((8) and (10)) can be written in the
general form

o =A (X = 1) /A + AN —2) /A (B.1)

The meaning of A, A, follows from a comparison of Eq. (B.1)
with Eq. (8) or (10).
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Special cases of Eq. (B.1) for the most often used geomet-
rical modes are the following

Stress in uniaxial extension UE
=20 = 1A% 2= ((R+2/14)/3)"

o1 =A (A — 1/22) + A (,17*1 - 1//13””/2)); 72 =0
(B.2)

Stress in equibiaxial extension EBE
M=l o= (22 +1/4)/3)"

o = A (4 — 1/2) + A, (,1771 _ 1/,‘{(11+2n)>; P

(B.3)
Stresses in pure shear PS
=1 da=1/4; A=(R+1+1/2)/3)""
longitudinal pure shear stress PS1
1= A (0 — 1/2) + A (x';*l - 1/A§‘+">) (B.4)
transverse pure shear stress PS2
o =A(1-1/27) + A (1= 1/2]) (B.5)

Appendix C

In the range of x from 0.7 to 0.9, the relative difference D =
Loj(x) = L7'(x)/L7"(x) between the Padé approximation,
L;dl (x), and the inverse Langevin function, L), approaches
5%, otherwise it is smaller than 3.5%:

X 02 04 06 07 0.8 085 090 095 098
D(%) 03 12 31 428 490 464 374 220 095

With x decreasing below 0.2, D drops to zero.

Appendix D

Comments on the Edwards—Vilgis approach to the finite
network extensibility.
Citation from our previous paper [47], p. 3807:

It should be noted that for the end-to-end distance distribu-
tion of a tube-like confined network chain, Edwards and
Vilgis [1] intentionally chose a simple empirical function;
they write: “How can we model the singularity in entropy?
There are many possible models (including of course the

exact Langevin) but we want a representation which is ame-
nable to calculation and contains the essential features of
inextensibility.” Thus, both the crosslinking term of the
Edwards—Vilgis free energy and the calculated stresses
based on it are to be looked upon as mere phenomenological
approximations of a conceivable rigorous treatment that
would model the singularity in chain entropy using Lange-
vin statistics. Such calculation would probably lead to
a function more resembling the result derived by Arruda
and Boyce.

Further arguments: Let o be the stress calculated for the
connectivity term in the frame of the Edwards—Vilgis theory
[1] and oG,y the stress calculated in the frame of the Gauss-
ian theory. The relative stress contribution of finite extensibil-
ity, FE,¢;, to the Gaussian stress is expressed by

FE,e; = (0/0Gauss) — 1, and from the Edwards—Vilgis theory
[1] one gets

1 —(2d —d’1)
FEq =—— ———1
1—1,(2d - d?I)

(D.1)
where d is the inextensibility parameter (d = 0 for infinite ex-
tensibility) and I; = ", )t,-z. At small strains approaching zero,
I, = 3, and for d > 0 the expression for FE,., is seen to be non-
zero and positive, as expected. With increasing strain, FE,
increases.

The Kaliske—Heinrich and Kliippel—Schramm FE,; can
formally be expressed by the same Eq. (D.1) where, however,
I, is replaced by I,,=1; —3 (see Eq. (2)). For d >0 and
I, = 3, one gets I, = 0, and the relative contribution of finite
extensibility to the Gaussian stress can be deduced from Eq.
(D.1) as

FE. = —2d (D.2)
FE,. is now predicted to be non-zero and negative. Such re-
sult, of course, is not physically realistic and casts doubts on
the Kaliske—Heinrich and Kliippel—Schramm treatments.
For example, if Zi A,-zzb’ and d =0.02, then the Edwards—
Vilgis finite extensibility contribution to the Gaussian stress
amounts to 4+8.8% whereas that of Kliippel and Schramm to
—4%; the difference =13% is small but not negligible. The
Kluppel—Schramm value of FE,; does not become higher
than zero before I; exceeds 4 (i.e., in uniaxial extension, if
Ay exceeds 1.67); with further increasing strain it approaches
the Edwards—Vilgis FE,.,.
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